Русский ученый генетик. Известные деятели в области генетики

Российские учёные из Института общей генетики им. Вавилова впервые в России получили донорскую кровь — не от донора, а из… кожи. А ещё раньше — вырастили из неё зачаток глаза человека.

Означает ли это, что учёные всё-таки научились выращивать «запчасти» к отслужившим свой срок органам и тканям, персонально подходящие каждому человеку? Об этом «АиФ» спросил у Марии Лагарьковой, доктора биологических наук, руководителя лаборатории Института общей генетики им. Вавилова РАН, которая занимается новейшими исследованиями в области стволовых клеток.

Магия укола

Юлия Борта, «АиФ»: Мария Андреевна, помимо крови в вашей лаборатории вырастили подобие мини-сердца…

Мария Лагарькова: Да, мы первые в России. Но подобные работы проводились и в США, Англии, Японии.

— Стволовые клетки уже обросли нереальным количеством легенд — от сенсаций, что они могут исцелить всё, до страшилок о развитии рака у звёзд, которые использовали их для омоложения.

— Инъекции стволовых клеток косметологами — полный бред. Откуда они их взяли, как получили? Почему кололи в лицо, а опухоль возникла совершенно в другом месте? Думаю, что слухи о связи косметических процедур с образованием опухолей не имеют никаких оснований. Стволовые клетки очень разные. Они есть в нашем взрослом организме. В костном мозге — стволовые клетки крови. Они могут превратиться в любую клетку крови. Другие умеют делать кость, хрящ или жир, но не способны делать кровь. В голов­ном мозге есть стволовые клетки, которые могут превращаться только в клетки мозга. Каждый тип стволовых клеток всю жизнь сидит на своём месте и отвечает за воспроизводство определённых тканей. Но есть универсальные стволовые клетки, которые могут превращаться в абсолютно любую клетку организма. Во взрослом организме их нет. Их можно выделить из невостребованных для искусственного оплодотворения (ЭКО) эмбрионов и растить в пробирке.

— И ими можно заменить поражённые клетки в организме?

— По статистике, они подойдут всего одному из десятка тысяч человек. Недавно учёные решили эту проблему. За это открытие в 2012 г. японцу С. Яманаке вручили Нобелевскую премию. У любого человека можно взять кусочек кожи — меньше квадратного миллиметра, волос или кровь, выделить клетки, внедрить в них набор определённых генов и получить ту самую универсальную стволовую клетку, а её превратить во что захотим. Персонально для каждого можно сделать идеально совместимые с ним нейроны, кровь, кость, хрящ — всё что угодно. Японцы создали таким образом один из типов клеток сетчатки глаза. Сейчас в Японии начинается первая стадия клинических испытаний. Многие работают над получением клеток, вырабатывающих инсулин. Как только это произойдёт, вероятно, все больные диабетом смогут навсегда излечиться. Но пока есть масса сложностей. Очень трудно создать клетки, ответственные за кроветворение. Не выработано и понимание того, как заставить превращаться все клетки 100%-но.
Иначе вместо нерва может вырасти, к примеру, кость.

Уже не фантастика

— Клетки научились воссоздавать. А органы целиком?

— Пока нет. Любой орган состоит из многих типов клеток, имеет трёхмерную структуру, форму, пронизан сосудами и нервами. Хотя мини-органы уже получаются. В нашей лаборатории мы создали подобие зачатка глаза. Японцы вырастили зачаток зуба. Голландцы — мини-кишку. Но ещё не скоро выращенное в пробирке сердце будет пересажено человеку.

— Почему?

— Нерешённых вопросов много. Например, как доставить клетки, выращенные в лаборатории, в нужный орган, чтобы они прижились, образовали связи с соседними, проросли сосудами. Это удалось пока только с отдельными типами клеток. Технологии генетической инженерии дошли до того, что в любых больных клетках можно исправить генетическую поломку, вызвавшую болезнь. Осталось научиться пересаживать выращенные в лаборатории клетки обратно человеку.

Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.) , генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

    Гены находятся в хромосомах и расположены там линейно.

    У каждой хромосомы есть гомологичная ей.

    От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

    Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

    Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

Позже были открыты следующие свойства (60-е годы):

    Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

    Каждую аминокислоту кодирует один триплет или более.

    Триплеты не перекрываются.

    Считывание начинается со стартового триплета.

    В ДНК нет «знаков препинания».

В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.


Каждое из открытий имеет важнейшее значение для науки и человечества.

Ген интеллекта

Американские ученые из Калифорнии обнаружили белок с названием «клото» и ген KL-VS, который отвечает за его выработку. Последний тут же получил имя «ген интеллекта», ведь данный белок способен повысить показатели IQ человека сразу на 6 пунктов. Более того, этот белок можно синтезировать искусственно, и не важно, какого возраста человек. Следовательно, в будущем ученые научатся научными методами делать людей умнее вне зависимости от их природных интеллектуальных данных. Конечно, при помощи «клото» невозможно сделать из обычного человека гения. Но помочь людям с задержками интеллектуального развития, а также тем, кто страдает от болезни Альцгеймера, в будущем, возможно, и получится.

Болезнь Альцгеймера

Кстати, о болезни Альцгеймера. С момента ее описания в 1906 году ученые не могли достоверно выяснить природу данного заболевания, по каким причинам оно развивается у одних людей, а у других – нет. Но недавно появился существенный прорыв в изучении этой проблемы. Японские исследователи из Университета Осака обнаружили ген, который развивает болезнь Альцгеймера у подопытных мышей. В рамках исследований был выявлен ген klc1, способствующий накоплению в тканях мозга бета-амилоидного белка, который и является основным фактором развития болезни Альцгеймера. Механизм этого процесса был известен давно, но раньше никто не мог объяснить его причину. Опыты показали, что при блокировке гена klc1, количество скапливающегося в головном мозге бета-амилоидного белка снижается на 45%. Ученые надеются, что в будущем их исследования помогут в борьбе с болезнью Альцгеймера – опасным заболеванием, которым страдают десятки миллионов пожилых людей по всему миру.

Ген глупости

Оказывается, существует не только ген интеллекта, но и ген глупости. Во всяком случае, так считают ученые из Университета Эмори в Техасе. Они обнаружили генетическое отклонение RGS14, отключение которого позволяет заметно улучшить интеллектуальные способности подопытных мышей. Выяснилось, что блокировка гена RGS14 делает более активной область CA2 в гиппокампе – области мозга, отвечающей за накопление новых знаний и сохранение воспоминаний. Лабораторные мыши без этой генетической мутации стали лучше запоминать объекты и перемещаться по лабиринту, а также лучше адаптироваться к изменяющимся условиям внешней среды. Ученые из Техаса надеются в будущем разработать препарат, который блокировал бы ген RGS14 у уже живущего человека. Это позволило бы дать людям невиданные ранее интеллектуальные возможности и познавательные способности. Но до реализации данной идеи нужно еще не одно десятилетие.

Ген ожирения

Оказывается, у ожирения также есть генетические причины. В разные годы ученые находили разные гены, способствующие появлению лишнего веса и большого количества жира в организме. Но «главным» из них на данный момент считается IRX3. Выяснилось, что этот ген влияет на процент жира относительно общей массы. Во время лабораторных исследований, оказалось, что у мышей с поврежденным IRX3 процент жира в организме в два раза меньше, чем у остальных. И это притом, что их кормили одинаковым количеством высококалорийной пищи.

Дальнейшее изучение генетической мутации IRX3, а также механизмов ее воздействия на организм позволит создавать эффективные лекарства от ожирения и диабета.

Ген счастья

И главное, на наш взгляд, открытие генетиков из всех упомянутых в этом обзоре. Обнаруженный учеными из Лондонской школы здоровья, 5-HTTLPR называют «геном счастья». Ведь, оказывается, он отвечает за распространение гормона серотонин в нервных клетках. Считается, что серотонин является одним из важнейших факторов, отвечающих за настроение человека, он заставляет нас радоваться или грустить, в зависимости от внешних условий. Те, у кого низкий уровень этого гормона, подвержены частым приступам плохого настроения и депрессий, склонны к тревожности и пессимизму. Британские ученые выяснили, что так называемая «длинная» вариация гена 5-HTTLPR способствует лучшей доставке серотонина в головной мозг, что заставляет человека чувствовать себя в два раза счастливее, чем остальные. Эти выводы основаны на опросе и изучении генетических особенностей нескольких тысяч добровольцев. При этом самые лучшие показатели довольства жизнью оказались у тех людей, оба родителя которых также обладают «геном счастья».

Телеграф - последние новости Украины и мира

Рождение генетики на рубеже двух веков (1900) было подготовлено всем предшествующим развитием биологической науки. XIX в. вошел в историю биологии благодаря двум великим открытиям: клеточной теории, сформулированной М. Шлейденом и Т. Шванном (1838), и эволюционному учению Ч. Дарвина (1859). Оба открытия сыграли определяющую роль в становлении генетики. Клеточная теория, объявившая клетку основной структурной и функциональной единицей всех живых существ, вызвала повышенный интерес к изучению ее строения, что в дальнейшем привело к открытию хромосом и описанию процесса клеточного деления. В свою очередь, теория Ч. Дарвина касалась важнейших свойств живых организмов, которые стали впоследствии предметом изучения генетики — наследственности и изменчивости. Обе теории в конце XIX в. объединила идея о необходимости существования материальных носителей этих свойств, которые должны находиться в клетках.

До начала ХХ в. все гипотезы о механизмах наследственности носили чисто умозрительный характер. Так, согласно теории пангенезиса Ч. Дарвина (1868) от всех клеток организма отделяются мельчайшие частицы — геммулы, которые циркулируют по кровяному руслу и попадают в половые клетки. После слияния половых клеток, в ходе развития нового организма, из каждой геммулы образуется клетка того же типа, от которого она произошла, обладающая всеми свойствами, в том числе и приобретенными родителями в течение жизни. Корни воззрения Дарвина относительно механизма передачи признаков от родителей к потомству через кровь лежат еще в натурфилософии древнегреческих философов, в том числе в учении Гиппократа (V в. до н.э.).

Еще одна умозрительная гипотеза наследственности была выдвинута в 1884 г. К. Негели (нем.). Он предположил, что в передаче наследственных задатков потомству принимает участие особое вещество наследственности — идиоплазма, состоящая из молекул, собранных в клетках в крупные нитевидные структуры — мицеллы. Мицеллы соединяются в пучки и образуют сеть, которая пронизывает все клетки. Идиоплазмой обладают как половые, так и соматические клетки. Остальная часть цитоплазмы в передаче наследственных свойств участия не принимает. Не будучи подкреплена фактами, гипотеза К. Негели, тем не менее, предвосхитила данные о существовании и структурированности материальных носителей наследственности.

Впервые на хромосомы как материальные носители наследственности указал А. Вейсман. В своей теории он исходил из выводов немецкого цитолога Вильгельма Ру (1883) о линейном расположении в хромосомах наследственных факторов (хроматиновых зерен) и продольном расщеплении хромосом во время деления как возможном способе распределения наследственного материала. Теория “зародышевой плазмы” А. Вейсмана получила окончательное оформление в 1892 г. Он считал, что в организмах существует особое вещество наследственности — “зародышевая плазма”. Материальным субстратом зародышевой плазмы являются хроматиновые структуры ядер половых клеток. Зародышевая плазма бессмертна, через половые клетки она передается потомкам, тогда как тело организма — сома — является смертным. Зародышевая плазма состоит из дискретных частиц — биофор, каждая из которых определяет отдельное свойство клеток. Биофоры группируются в детерминанты — частицы, определяющие специализацию клеток. Они, в свою очередь, объединяются в структуры более высокого порядка (иды), из которых формируются хромосомы (по терминологии А. Вейсмана —).

А. Вейсман отрицал возможность наследования приобретенных свойств. Источником наследственных изменений, согласно его учению, служат события, которые происходят в ходе процесса оплодотворения: потеря части информации (редукция) во время созревания половых клеток и смешение детерминантов отца и матери, приводящее к появлению новых свойств. Теория А. Вейсмана оказала огромное влияние на развитие генетики, определив дальнейшее направление генетических исследований.

К началу ХХ в. были созданы реальные предпосылки для развития генетической науки. Решающую роль сыграло переоткрытие в 1900 г. законов Г. Менделя. Чешский исследователь-любитель, монах Брюннского монастыря Грегор Мендель еще в 1865 г. сформулировал основные законы наследственности. Это стало возможным благодаря разработке им первого научного генетического метода, который получил название “гибридологического”. В его основу была положена система скрещиваний, позволяющая вскрывать закономерности наследования признаков. Менделем были сформулированы три закона и правило “чистоты гамет”, которые будут подробно рассмотрены в следующей лекции. Не менее (а, может быть, более) важным было то, что Мендель ввел понятие о наследственных задатках (прообразах генов), которые служат материальной основой развития признаков, и высказал гениальную догадку об их парности как результате слияния “чистых” гамет.

Исследования Менделя и его взгляды на механизм наследования опередили развитие науки на несколько десятилетий. Даже умозрительные гипотезы о природе наследственности, о которых говорилось выше, были сформулированы позже. Еще не были открыты хромосомы и не был описан процесс клеточного деления, который лежит в основе передачи наследственной информации от родителей к потомкам. В связи с этим современники, даже те, кто подобно Ч. Дарвину был знаком с работами Г. Менделя, не сумели по достоинству оценить его открытие. На протяжении 35 лет оно не было востребовано биологической наукой.

Справедливость восторжествовала в 1900 г., когда последовало вторичное переоткрытие законов Менделя одновременно и независимо тремя учеными: Г. де Фризом (голл.), К. Корренсом (нем.) и Э. Чермаком (австр.). Повторив эксперименты Менделя, они подтвердили универсальный характер открытых им закономерностей. Менделя стали считать основателем генетики, и с 1900 г. начался отсчет развития этой науки.

В истории генетики обычно выделяют два периода: первый — период классической, или формальной, генетики (1900-1944) и второй — период молекулярной генетики, который продолжается до настоящего времени. Основная особенность первого периода заключается в том, что природа материальных носителей наследственности оставалась неизвестной. Введенное датским генетиком В. Иогансеном понятие “ген” — аналог менделевского наследственного фактора — было абстрактным. Вот цитата из его работы 1909 г.: “Свойства организма обусловливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами. В настоящее время нельзя составить никакого определенного представления о природе генов, мы можем лишь довольствоваться тем, что подобные элементы действительно существуют. Но являются ли они химическими образованиями? Об этом мы пока не знаем решительно ничего”. Несмотря на отсутствие знаний о физико-химической природе гена, именно в этот период были вскрыты основные законы генетики и разработаны генетические теории, составившие фундамент этой науки.

Переоткрытие законов Менделя в 1900 г. привело к быстрому распространению его учения и многочисленным, чаще всего успешным, попыткам исследователей в разных странах на разных объектах (куры, бабочки, грызуны и др.) подтвердить универсальный характер его законов. В ходе этих экспериментов были вскрыты новые закономерности наследования. В 1906 г. английские ученые У. Бэтсон и Р. Пеннет описали первый случай отклонения от законов Менделя, названный позже сцеплением генов. В этом же году английский генетик Л. Донкастер в опытах с бабочкой обнаружил явление сцепления признака с полом. Одновременно в начале ХХ в. начинается изучение стойких наследственных изменений мутаций (Г. де Фриз, С. Коржинский), а также появляются первые работы по генетике популяций. В 1908 г. Г. Харди и В. Вайнберг сформулировали основной закон генетики популяций о постоянстве частот генов.

Но наиболее важными исследованиями периода классической генетики были работы выдающегося американского генетика Т. Моргана и его учеников. Т. Морган является основателем и руководителем крупнейшей в мире генетической школы, из которой вышла целая плеяда талантливых генетиков. В своих исследованиях Морган впервые использовал плодовую мушку дрозофилу, которая стала излюбленным генетическим объектом и продолжает им оставаться и сейчас. Изучение явления сцепления генов, открытого У. Бетсоном и Р. Пеннетом, позволило Моргану сформулировать основные положения хромосомной теории наследственности, с которыми мы подробно познакомимся ниже. Главный тезис этой базовой генетической теории заключался в том, что гены в линейном порядке располагаются в хромосоме, подобно бусинкам на ниточке. Однако даже в 1937 г. Морган писал о том, что среди генетиков нет согласия в точке зрения на природу гена — являются ли они реальными или абстракцией. Но отмечал, что в любом случае ген ассоциирован со специфической хромосомой и может быть локализован там путем чистого генетического анализа.

Морганом и его коллегами (Т. Пайнтер, К. Бриджес, А. Стертевант и др.) выполнен ряд других выдающихся исследований: разработан принцип генетического картирования, создана хромосомная теория определения пола, изучена структура политенных хромосом.

Важным событием периода классической генетики было развитие работ по искусственному мутагенезу, первые данные о котором были получены в 1925 г. в СССР Г.А. Надсоном и Т.С. Филипповым в опытах по облучению дрожжевых клеток радием. Решающее значение для развертывания работ в этом направлении имели эксперименты американского генетика Г. Меллера по воздействию рентгеновских лучей на дрозофилу и разработка им методов количественного учета мутаций. Работа Г. Меллера вызвала огромное число экспериментальных исследований с использованием рентгеновских лучей на разных объектах. В результате был установлен их универсальный мутагенный эффект. Позже было обнаружено, что мутагенным действием обладают и другие типы излучения, например УФ, а также высокая температура и некоторые химические вещества. Первые химические мутагены были открыты в 30-х гг. в СССР в экспериментах В.В. Сахарова, М.Е. Лобашева и С.М. Гершензона и их сотрудников. Через несколько лет это направление приобрело широкий размах, особенно благодаря исследованиям А.И. Рапопорта в СССР и Ш. Ауэрбаха в Англии.

Исследования в области экспериментального мутагенеза привели к быстрому прогрессу в познании мутационного процесса и к выяснению ряда вопросов, касающихся тонкой структуры гена.

Еще одно важное направление генетических исследований в период классической генетики касалось изучения роли генетических процессов в эволюции. Основополагающие работы в этой области принадлежат С. Райту, Р. Фишеру, Дж. Холдейну и С.С. Четверикову. Своими трудами они подтвердили правильность основных положений дарвинизма и способствовали созданию новой современной синтетической теории эволюции, которая представляет собой результат синтеза теории Дарвина и генетики популяций.

С 1940 г. начался второй период в развитии мировой генетики, который получил название молекулярного, в соответствии с лидирующим положением этого направления генетической науки. Основную роль в бурном подъеме молекулярной генетики сыграл тесный альянс биологов с учеными других областей естествознания (физики, математики, кибернетики, химии), на волне которого был сделан ряд важнейших открытий. В течение этого периода ученые установили химическую природу гена, определили механизмы его действия и контроля и сделали еще много важнейших открытий, которые превратили генетику в одну из основных биологических дисциплин, определяющих прогресс современного естествознания. Открытия молекулярной генетики не опровергли, а лишь вскрыли глубинные механизмы тех генетических закономерностей, которые были вскрыты формальными генетиками.

Работами Дж. Бидла и Э. Тетума (США) было установлено, что мутации у хлебной плесени Neurospora crassa блокируют различные этапы клеточного метаболизма. Авторы высказали предположение, что гены контролируют биосинтез ферментов. Появился тезис: “один ген — один фермент”. В 1944 г. исследование по генетической трансформации у бактерий, выполненное американскими учеными (О. Эйвери, К. Маклеод и М. Маккарти), показало, что носителем генетической информации является ДНК. Этот вывод позже был подтвержден при изучении явления трансдукции (Дж. Ледерберг и М. Зиндер, 1952) — переноса информации от одной бактериальной клетки к другой с помощью фаговой ДНК.

Перечисленные исследования определили повышенный интерес к изучению структуры ДНК, следствием которого явилось создание в 1953 г. модели молекулы ДНК Дж. Уотсоном (амер. биолог) и Ф. Криком (англ. химик). Она была названа двойной спиралью, так как согласно модели построена из двух закрученных в спираль полинуклеотидных цепей. ДНК — полимер, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из пятиуглеродного сахара дезоксирибозы, остатка фосфорной кислоты, и одного из четырех азотистых оснований (аденин, гуанин, цитозин и тимин). Эта работа сыграла основную роль в дальнейшем развитии генетики и молекулярной биологии.

На основании этой модели был вначале постулирован (Ф. Крик), а затем и доказан экспериментально (М. Месельсон и Ф. Сталь, 1957 г.) полуконсервативный механизм синтеза ДНК, при котором молекула ДНК разделяется на две одиночные цепи, каждая из которых служит матрицей для синтеза дочерней цепи. В основе синтеза лежит принцип комплементарности, определенный ранее Э. Чаргаффом (1945), согласно которому азотистые основания двух цепей ДНК располагаются друг против друга парами, причем аденин соединяется только с тимином (А-Т), а гуанин с цитозином (G-C). Одним из следствий создания модели стала расшифровка генетического кода — принципа записи генетической информации. Над этой проблемой трудились многие научные коллективы в разных странах. Успех пришел к амер. генетику М. Ниренбергу (нобелевский лауреат), в лаборатории которого было расшифровано первое кодовое слово — кодон. Этим словом стал триплет YYY, последовательность из трех нуклеотидов с одним и тем же азотистым основанием — урацилом. В присутствии молекулы иРНК, состоящей из цепочки таких нуклеотидов, синтезировался монотонный белок, содержащий последовательно соединенные остатки одной и той же аминокислоты — фенилаланина. Дальнейшая расшифровка кода была делом техники: используя матрицы с разными сочетаниями оснований в кодонах, ученые составили кодовую таблицу. Были определены все особенности генетического кода: универсальность, триплетность, вырожденность и неперекрываемость. Расшифровку генетического кода по значению для развития науки и практики сравнивают с открытием ядерной энергии в физике.

После расшифровки генетического кода и определения принципа записи генетической информации ученые задумались над тем, каким образом осуществляется перенос информации с ДНК на белок. Исследования этой проблемы закончились полным описанием механизма реализации генетической информации, включающего два этапа: транскрипцию и трансляцию.

После определения химической природы гена и принципа его действия встал вопрос о том, как регулируется работа генов. Впервые он прозвучал в исследованиях французских биохимиков Ф. Жакоба и Ж. Моно (1960), которые разработали схему регуляции группы генов, контролирующих процесс сбраживания лактозы в клетке кишечной палочки. Они ввели понятие бактериального оперона как комплекса, который объединяет все гены (как структурные, так и гены-регуляторы), обслуживающие какое-либо звено метаболизма. Позже правильность их схемы была доказана экспериментально при изучении разнообразных мутаций, затрагивающих различные структурные единицы оперона.

Постепенно вырабатывалась схема механизма регуляции генов эукариот. Этому способствовало установление прерывистой структуры некоторых генов и описание механизма сплайсинга.

Под влиянием прогресса в изучении структуры и функции генов в начале 70-х гг. ХХ в. у генетиков возникла идея манипуляции ими, в первую очередь, путем переноса их из клетки в клетку. Так появилось новое направление генетических исследований — генная инженерия.

Базу для развития этого направления составили эксперименты, в ходе которых были разработаны методы получения отдельных генов. В 1969 г. в лаборатории Дж. Бэквита из хромосомы кишечной палочки с использованием явления трансдукции был выделен лактозный оперон. В 1970 г. коллективом под руководством Г. Корано был впервые осуществлен химический синтез гена. В 1973 г. разработан метод получения фрагментов ДНК — доноров генов — с использованием ферментов рестриктаз, разрезающих молекулу ДНК. И, наконец, был разработан метод получения генов на основе явления обратной транскрипции, открытый в 1975 г. Д. Балтимором и Г. Теминым. Для введения чужеродных генов в клетки на основе плазмид, вирусов, бактериофагов и транспозонов (мобильных генетических элементов) конструировались различные векторы — молекулы-переносчики, которые осуществляли процесс переноса. Комплекс вектора с геном был назван рекомбинантной молекулой. Первая рекомбинантная молекула на основе ДНК фага была сконструирована в 1974 г. (Р. Маррей и Д. Маррей). В 1975 г. были разработаны методы клонирования клеток и фагов со встроенными генами.

Уже в начале 70-х гг. были получены первые результаты экспериментов в области генной инженерии. Так, в клетку кишечной палочки была введена рекомбинантная молекула, содержащая два разных гена устойчивости к антибиотикам (тетрациклину и стрептомицину), после чего клетка приобрела резистентность к обоим препаратам.

Постепенно расширялся набор векторов и вводимых генов и совершенствовалась технология переноса. Это позволило широко использовать методы генной инженерии в промышленных целях (биотехнология), в первую очередь в интересах медицины и сельского хозяйства. Были сконструированы бактерии — продуценты биологически активных веществ. Это позволило наладить в нужных масштабах синтез таких необходимых человеку препаратов, как инсулин, соматостатин, интерферон, триптофан и др. Создано большое количество трансгенных растений, которые стали обладателями ценных свойств (устойчивость к вредителям, засухе, высокое содержание белка и пр.) в результате введения в их геном чужеродных генов.

В 70-х гг. были начаты работы по секвенированию геномов разных объектов, начиная с бактериофагов и кончая человеком.

Особого внимания заслуживает международная генетическая программа “Геном человека”, целью которой являются полная расшифровка генетического кода человека и картирование его хромосом. В перспективе намечается интенсивное развитие новой области медицинской генетики — генотерапии, которое должно способствовать снижению риска проявления вредных генов и тем самым максимальному ограничению генетического груза.

История развития генетики в России

Становление генетики в России произошло во втором десятилетии ХХ в. Создателем первой отечественной школы генетиков был Юрий Александрович Филипченко. В 1916 г. он начал читать в Санкт-Петербургском университете курс лекций “Учение о наследственности и эволюции”, в котором центральное место отвел законам Менделя и исследованиям Т. Моргана. Им был сделан авторизированный перевод книги Моргана “Теория гена”. Научные интересы Ю.А. Филипченко лежали в области наследственности и изменчивости качественных и количественных признаков. Особое внимание он уделял статистическим закономерностям изменчивости. Ю.А. Филипченко написал ряд превосходных книг, среди них учебник “Генетика”, по которому в нашей стране училось несколько поколений биологов.

В этот же период сформировались еще две научные генетические школы: одна в Институте экспериментальной биологии (г. Москва) под руководством Николая Константиновича Кольцова, другая под руководством Николая Ивановича Вавилова начала создаваться в Саратове, где он был избран профессором университета, а окончательно сформировалась в Ленинграде на базе Всесоюзного Института растениеводства (ВИР).

Н.К. Кольцов возглавлял крупный Научно-исследовательский институт экспериментальной биологии в Москве. Он первым высказал идею о макромолекулярной организации носителей наследственности (хромосом) и их самоудвоении как механизме передачи генетической информации. Идеи Н.К. Кольцова оказали сильное влияние на известных ученых того периода, не только биологов, но и физиков, чьи исследования структуры гена привели к развитию молекулярной генетики. Из научной школы Н.К. Кольцова вышли такие крупные генетики, как А.С. Серебровский, Б.Л. Астауров, Н.П. Дубинин, Н.В. Тимофеев-Ресовский, В.В. Сахаров и другие.

Выдающийся генетик и селекционер Н.И. Вавилов завоевал широкое признание своими трудами в области изучения мирового земледелия и растительных ресурсов. Он является автором учения о центрах происхождения и разнообразия культурных растений и учения об иммунитете, а также закона гомологических рядов в наследственной изменчивости. Кроме того, им создана мировая коллекция сельскохозяйственных и технических растений, в том числе знаменитая коллекция сортов пшеницы. Н.И. Вавилов пользовался большим авторитетом не только среди отечественных, но и среди зарубежных ученых. В созданный им в Ленинграде Всесоюзный институт растениеводства (ВИР) съезжались работать ученые со всех стран мира. Признанием заслуг Н.И. Вавилова стало избрание его президентом Международного генетического конгресса, который состоялся в 1937 г. в Эдинбурге. Однако обстоятельства не позволили Н.И. Вавилову присутствовать на этом съезде.

Серьезный вклад в развитие теоретической генетики внесли исследования профессора Московского университета Александра Сергеевича Серебровского и его молодых коллег Н.П. Дубинина, Б.Н. Сидорова, И.И. Агола и других. В 1929 г. ими было сделано открытие явления ступенчатого аллелизма у дрозофилы, которое стало первым шагом к отказу от утвердившегося среди генетиков представления о неделимости гена. Была сформулирована центровая теория строения гена, согласно которой ген состоит из более мелких субъединиц — центров, которые могут мутировать независимо друг от друга. Эти исследования послужили стимулом для развертывания работ по изучению структуры и функции гена, результатом которых стала выработка современной концепции сложной внутренней организации гена. Позже (в 1966 г.) за цикл работ в области теории мутаций Н.П. Дубинин был удостоен Ленинской премии.

К началу 40-х гг. ХХ в. в СССР генетика находилась в состоянии расцвета. Помимо указанных выше, следует отметить работы Б.Л. Астаурова по регулированию пола у тутового шелкопряда генетическими методами; цитогенетические исследования Г.А. Левитского, работы А.А. Сапегина, К.К. Мейстера, А.Р. Жебрака, Н.В. Цицина по генетике и селекции растений; М.Ф. Иванова по генетике и селекции животных; В.В. Сахарова, М.Е. Лобашева, С.М. Гершензона, И.А. Рапопорта по химическому мутагенезу; С.Г. Левита и С.Н. Давиденкова по генетике человека и работы многих других талантливых ученых.

Однако сложившаяся в СССР к началу Второй мировой войны политическая ситуация противостояния капиталистическому миру привела к гонениям на ученых, работавших в области генетики, которая была объявлена идеалистической буржуазной наукой, а ее приверженцы — агентами мирового империализма. Репрессии обрушились на головы многих известных ученых, в том числе Н.И. Вавилова, М.Е. Лобашева, Г.Д. Карпеченко, С.М. Гершензона и многих, многих других. Генетика была отброшена на несколько десятилетий назад. Немалую роль в развале генетической науки сыграл Т.Д. Лысенко. Будучи простым агрономом, он не смог подняться до уровня классической генетики с ее абстрактными представлениями о гене и поэтому просто отрицал законы Менделя, хромосомную теорию наследственности Моргана, учение о мутациях. Свою научную несостоятельность Лысенко прикрывал щедрыми обещаниями быстрого подъема сельского хозяйства с помощью пропагандируемых им методов переделки растений под влиянием условий выращивания, чем заслужил поддержку лично И.В. Сталина. В качестве щита Лысенко использовал работы выдающегося селекционера И.В. Мичурина. В отличие от мировой науки, наша генетика стала называться мичуринской. Такая “честь” привела к тому, что за Мичуриным закрепилась слава приверженца идей Лысенко, которая не покидала ученого даже после краха деятельности последнего. На самом же деле И.В. Мичурин был выдающимся селекционером-практиком, плодоводом, никогда не имевшим отношения к разработке теоретических основ генетической науки.

Отечественная наука окончательно очистилась от “лысенковщины” только к середине 60-х гг. Вышли из “подполья” многие из пострадавших от репрессий ученых, те, кому удалось выжить, в том числе Н.В. Тимофеев-Ресовский, М.Е. Лобашов, В.В. Сахаров и другие. Сохраненные ими традиции и большой потенциал, заложенный в их учениках, способствовали быстрому движению вперед, хотя отставание от мирового уровня, конечно, давало о себе знать. Тем не менее, поднималось новое поколение отечественных генетиков, которым предстояло вывести эту науку на прежний уровень. И снова ряды ученых с мировой известностью пополнились российскими именами: А.Н. Белозерского, В.А. Энгельгардта, С.И. Алиханяна, Р.Б. Хесина, А.С. Спирина, С.В. Шестакова, С.Г. Инге-Вечтомова, Ю.П. Алтухова и многих других.

Однако новые социальные потрясения, вызванные перестройкой, повлекшей отток научных кадров за границу, снова помешали нашей науке обрести соответствующий статус. Остается надеяться, что молодое поколение, опираясь на заложенный предшествующими корифеями фундамент, сможет выполнить эту благородную миссию.

В Калифорнии сотрудники компании Sangamo Therapeutics. Все прочие опыты, за исключением одного в Китае, о котором мало что известно, осуществлялись исключительно на образцах эмбриональной ткани.

Для 44-летнего пациента редактирование генома стало последним шансом. Брайан Маде страдает от синдрома Хантера, связанного с неспособностью печени производить важный фермент для расщепления мукополисахаридов. Фермент приходится вводить искусственно, что очень дорого, к тому же для борьбы с последствиями болезни Маде пришлось пройти через 26 операций. Чтобы помочь Брайану, ему внутривенно ввели миллиарды копий корректирующих генов, а также генетические инструменты, которые должны разрезать ДНК в определенных местах. Геном клеток печени должен измениться на всю оставшуюся жизнь. В случае успеха лечения исследователи продолжат эксперименты с другими наследственными заболеваниями.

ИИ спровоцировал скачок популярности STEM-образования в Китае

Технологии

2. Создан стабильный полусинтетический организм

В основе любой жизни на Земле лежат четыре буквы-нуклеиновых основания: аденин, тимин, цитозин и гуанин (A, T, C, G). Используя этот алфавит, можно создать любой живой организм, от бактерии до кита. Ученые давно пытаются «взломать» этот код, и в этом году им это, наконец, удалось. Прорыв совершили генетики из Исследовательского института Скриппс. Они генетический алфавит двумя новыми буквами - X и Y, которые вставили в ДНК кишечной палочки.

Вводить искусственные буквы в ДНК научились уже несколько лет назад, настоящим прорывом 2017 года стала стабильность искусственного организма. Раньше основания X и Y терялись при делениях, и потомки модифицированной бактерии быстро возвращались к «дикому» состоянию. Благодаря усовершенствованию технологий и изменениям, внесенным в основание Y, удалось добиться сохранения искусственных «букв» в геноме бактерий на протяжении 60 поколений. Применение новой технологии на практике пока остается делом будущего - возможно, ее можно будет применить для придания микроорганизмам новых свойств. Пока же для исследователей важнее тот факт, что им удалось модифицировать один из фундаментальных механизмов жизни.

3. Обнаружен «космический ген»

Мир переживает «космический Ренессанс»: компании во главе со SpaceX одна за другой рвутся в космос, а правительства планируют строить колонии на Марсе и Луне. Однако не стоит забывать, что миллионы лет наш вид и его предки эволюционировали для жизни на поверхности Земли. Важно заранее узнать, как долгое пребывание в космосе и на других планетах , чтобы предпринять необходимые меры защиты. К счастью, у исследователей появилась такая возможность - астронавт Скотт Келли, который провел на МКС около года, и его брат-близнец Марк, остававшийся на Земле, согласились на .

Помимо ожидаемых физиологических изменений, вызванных невесомостью, ученые с удивлением обнаружили различия в геномах братьев. У Скотта было зафиксировано временное удлинение теломер - концевых участков хромосом, а также изменения в экспрессии более 200 000 молекул РНК. Процесс включения и выключения тысяч генов преобразовался из-за пребывания в космосе. Ученые назвали совокупность этих изменений « ». Пока неизвестно, как он повлиял на здоровье Скотта - эксперименты с близнецами Келли продолжаются.

4. Доказана эффективность генетической терапии

В 2017 году CRISPR и другие технологии генетического редактирования все активнее применяли для борьбы с различными заболеваниями. В отличие от случая Брайана Маде, большинство подобных методик не требуют масштабных модификаций генома, а клетки редактируются не в организме пациента, а в лаборатории. Подобные способы получили название генетической терапии. В уходящем году исследователи неоднократно доказывали ее эффективность против .

Самым ярким примером является борьба с опасным заболеванием, которое и само имеет генетическую природу. Речь идет о раке - точнее, пока только о некоторых его разновидностях. Исследователи продемонстрировали, что, взяв иммунные клетки больных лимфомой, с помощью генного редактирования настроив их на борьбу с опухолью и введя обратно пациенту, можно добиться высокого процента ремиссии. Метод, запатентованный под названием Kymriah™, в августе 2017 года был .

Google создал генератор речи, неотличимый от голоса человека

5. Устойчивость к антибиотикам объяснена на молекулярном уровне

В 2017 году обеспокоенные ученые объявили, что настал . Средство, которое почти сто лет спасало миллионы человеческих жизней, быстро становится неэффективным из-за появления устойчивых к антибиотикам бактерий. Это происходит благодаря быстрому размножению микроорганизмов и их способности обмениваться генами. Одна бактерия, научившаяся сопротивляться воздействию лекарств, передаст это умение не только своим потомкам, но и любым находящимся поблизости представителям своего вида.

Генетический скрининг важен не только для взрослых, но и для еще не родившихся детей и их родителей, и в этой сфере также есть движение вперед. Так, прошлогоднее исследование , что новая методика диагностики синдрома Дауна (и ряда других заболеваний) повысила точность предсказаний до 95%. Теперь потенциальные родители смогут решить судьбу плода, не опасаясь ошибки. Стартап идет еще дальше: он обещает с высокой точностью предсказывать рост, интеллект и здоровье будущего ребенка. Он использует новые технологии, благодаря которым стало возможным предугадывать не только заболевания и отклонения в развитии, вызванные единичной мутацией, но и состояния, формирующиеся путем взаимодействия множества генов. По сути, это уже евгеника, и к подобной практике возникает ряд этических вопросов.

Белоруссия легализует майнинг и криптовалюты

Технологии

8. Уточнены генетические механизмы эволюции

У основ теории эволюции стояли Чарльз Дарвин, открывший естественный отбор, и Грегор Мендель, впервые описавший механизмы наследственности. Ученые XX века смогли узнать, как эволюция работает на молекулярном уровне. Однако мы до сих пор далеки от полного понимания этого процесса, и каждый год приносит новые открытия. 2017 не стал исключением. Одной из главных работ о связи генетики и эволюции стало изучение рыб семейства цихлид, которое продемонстрировало, что наследственностью объясняются далеко не все признаки живых организмов. Например, в формировании костей черепа рыб огромную роль играет .

Помимо этого, ученые сделали еще целый ряд замечательных фундаментальных открытий генетических основ эволюции. Им удалось понять, как бесполый червь 18 млн лет, уточнить роль и понять, что вирусы служат важнейшим .

9. На ДНК впервые записали музыку

ДНК - система хранения информации, которая успешно работала миллиарды лет. Она надежна и занимает совсем немного места. Поэтому идея использовать ее для записи информации кажется очевидной, ведь люди производят и собирают все больше данных, которые нужно где-то хранить. В 2016 году ученые из Microsoft перевели размером с крупинку соли. В 2017 исследования в этой области продолжились.

Компания Twist Bioscience сумела впервые в истории записать на ДНК . Для этого были выбраны две композиции: «Tutu» Майлза Дэвиса (живая запись с джазового фестиваля в Монтре 1986 года) и хит Deep Purple «Smoke on the Water». По словам исследователей, записи получились идеальными, и любой сможет послушать их, например, через триста лет - достаточно будет воспользоваться машиной, читающей ДНК. В отличие от современных носителей, записи с помощью нуклеиновых кислот не подвержены быстрому разрушению. К тому же этот способ хранения данных настолько компактен, что, согласно расчетам, вся информация из Интернета, закодированная в ДНК, уместится в большую обувную коробку.

10. Созданы генетический принтер и биологический телепорт

С помощью 3D-печати сегодня создают дома, металлические детали и даже органы. Генетик Джон Крейг Вентер решил не останавливаться на этом и построил «генетический принтер

У технологии возможно и намного более фантастическое применение - «биологический телепорт». Отправив принтер с нужными материалами на Марс, можно будет с помощью радио отправить ему сигналы для печати бактерий. По мнению Вентера, это самый реалистичный сценарий колонизации Красной планеты: сначала микроорганизмы преобразуют среду, а потом на терраформированный Марс придет человек. Идея уже заинтересовала Илона Маска .

Загрузка...
Top